Understanding Type-well Curve
Complexities & Analytic Techniques
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Disclaimer and Objectives

The content of this presentation is intended to illustrate the complexities associated
with type-well curve development using monthly vendor/public production data and
demonstrate analytic techniques that may provide insights when developing type-
well curves.

These type-well curve analysis techniques are complimentary and informative to
workflows involving scientific modelling tools, forecasting tools and economic
evaluation tools.

The relevance of each topic will depend on what you're trying to accomplish.
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Clarification: Type-well Curve vs Type Curve

While “Type-well Curves” are often referred to as “Type Curves”, they are different.

Type Curves more properly refer to idealized production plots (based on equations
and/or numerical simulation) to which actual well production results are compared.

Type-Well Curves are based on actual well production data and represent an average
production profile for a collection of wells for a specified duration.
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Why are Type-well Curves Important?

Type-well Curves are a foundation of:
reserves evaluations
development planning
production performance comparisons
completion optimization analysis

The dangers of not understanding the complexities of Type-well Curves, and failing to

communicate how they were desighed/developed, can result in:
large statistical variability
inconsistent information used in development decisions
unattainable economic plans (especially in the unforgiving times of low commodity prices).
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Why are Type-well Curves Important?

Gas Type-well Curves

_ An example of six different approaches to Type-well Curves
$ using the same data from 85 wells...
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Why are Type-well Curves Important?

Cumulative Revenue at $2.50/mcf

E For this example the different

3 type-well curves yield results

— that vary >$500K in the first

:f:: e §1,491.475 year.

- This should concern any
decision maker!
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Presentation Outline

1) Chart Types

2) Analogue Selection

3) Normalization

4) Calendar Day vs Producing Day

5) Condensing Time

6) Operational/Downtime Factors on ldealized Curves
7) Survivor Bias

8) Truncation Using Sample Size Cut-off

9) Forecast the Average vs Average the Forecasts
10) Representing Uncertainty

11) Auto-forecast Tools
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1) Use Multiple Charts to Build a Narrative

ommon chart types include:
Rate vs Time
Cumulative Production vs Time
Rate vs Cumulative Production
Percentile (Cumulative Probability

Probit Scale Percentile
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1.1) Rate vs Time

Rate vs Time Type-well Curve Grouped by Operator
22'Wells - Group By: Operator - CO &wy Oil (hblidayfevell
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1.2) Cumulative Production vs Time

B4,000.00

Cumulative vs Time Type-well Curve Grouped by Operator
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1.3) Rate vs Cumulative Production

Rate vs Cumulative Type-well Curve Grouped by Operator
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Weakness: does not effectively communicate the time it
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1.4) Percentile (Cumulative Probability)

Oil Peak Rate Percentile
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1.5) Probit Scale (Cumulative Probability)

Qil Peak Rate Probit Chart
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2) Analogue Selection (the most important step)

- Analogue wells should have a similarity on which a comparison may be based
and represent the range of possible outcomes (i.e. don’t just select the best
wells).

- Selecting wells with similar characteristics may reduce the range of uncertainty
in your type-well curve.

- Common criteria for selecting similar wells include:

1) Geology

2) Reservoir

3) Well Design

4) Well Density
)

O1

Operational Design
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2.3) Analogue Selection (Well Design)

Completion Design Trends for a Company

s HOW do distributions of
320 | - 25 C e
| - 260
| . . INitial rates compare for
| 0o
) E 3 | 20 P,
2 | i P .o these data sets:
= | 2 3
2 | s 2 3 2013 wells (highl
| o O - —
0 : 150 5 z o
= 160 @ @ 3 . .
L pre-2013 | post 2013 0 % § variable completion
E significant variability : consistency in o 1200 £l
in completion design : completion design 100 ; -10 ' = .
” E —> E design)
a0 : E - 1,100
== — — — — 5
| s 2) post-2013 wells
2008 2009 2010 2011 2012 20l13 2014 o . .
(consistent completion
Oata provided by Canadian Discowe ry WICFD - Mow 23, 2015, 9:4H Al WSAGE™
~ WCFD - Avg Frac Spacing Array == YWICFD - Avg Proppant Placed per Stage {t) Array d - - 1 - | | I )
—= WCFD - Stages Actual (#) Array —= WCFD - Completed Length (m) Array eS I gn SI m I a r We S
= NTED - Completed Lendgth (m) Array 1,312 1,440 1,254 1,434 1,273 1,502 1,455
= O ACED - Stages Actual () Array 5 5 a 13 M 26 25
O ATED - Avg Proppant Placed per Stage (11 Array 102 241 150 a0 E1 o6 o
= NTED - Avg Frac Spacing Array 328 335 251 143 Gd G2 G4
18 Enterprise class. User-friendly. Discovery Analytics.



2.3) Analogue Selection (Reducing Uncertainty)

Gas Peak Rate Probit Distribution (pre-2103 vs post 2013)
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2.4) Well Density (using Cardinality)

Gas Type-well Curve (Rate vs Cumulative) Grouped by Cardinality
160 |
Cardinality is a measure of well density, calculating the drill order of each well within a
square mile. As well density increases well interference results in lower production
120 profiles.
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u increases) the production profiles decrease
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2.5) Operational Design

Capacity constraints (curtailment), contracts and operational constraints (line
pressure) are examples of production restrictions imposed on you given your
operational environment.

With the increase in proppant loading and better deliverability some operational
designs that you choose to impose may strive to maintain bottom hole pressure,
control flowback of sand, minimize base decline, enhance production yields (e.g.
condensate-gas ratio), or maximize EUR.
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2.5) Operational Design

Rate Restricted Well Example 1) Scroll through your dataset and look at
each well

10,000

8,000

2) Isolate and exclude wells that do not

E 5,000 demonstrate expected production
E decline behavior
E 4 (00
An example of a flow restricted well that does not exhibit 3) Where identifiable declines begin after
o000 | decline behavior (yet). This well would likely be excluded from

a period of rate restriction, you may

an analogue selection.

(cautiously) consider manually

0

Augi2014 Qct2014 Declz014 Feb/2015 Aprf2015 Junf2013 ALg2013 Qct2013

Date adjusting the normalization date and
Oata prowvided by IHS Information Hub - Bow 23, 2005, 10:29 24 W5AGE i n Cl u d e th e We I I
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3) Normalization

Normalization is a means of restructuring data to improve comparability (i.e. “leveling the playing field”).

1) Time Normalization

o Alignment of months relative to a common date or event
o Common dates used are first production date and peak rate date

2) Dimensional Normalization

o Sometimes referred to as “Unitization”

o Scaling production values relative to a well design parameter (Example: production/lateral length)

3) Fractional Normalization

o Scaling production values relative to the peak rate
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3.1) Time Normalization

What's the Best Type-well Curve?
4!5':.“ 265 Wells ‘
4,000 . . :
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3.1) Time Normalization

Time Align on First Production

Strength: on larger well sets, communicates the average production profile taking into account
variability in time to peak. Suitable for some comparisons (e.g. operator, vintage).

Weakness: may not accurately reflect production decline behavior.

Time Align on Peak Rate Date:

Strength: more accurately reflects production decline behavior.

Weakhess: excludes ramp up time (to peak) which has a small impact on EUR but is important
to first year revenue projections.
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3.1a) Time Normalization on First Production

Three Wells Time Normalized by First Production
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3.1b) Time Normalization on Peak Rate Date

Three Wells Time Normalized by Peak Rate Date
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3.1c) Use Charts to Inform (e.g. ramp up time)

Distribution of days to peak (30 day bins) .
|
@

Consider using charts like this to help you f@
o @°
.8’

further inform your type-well curve decisions

and/or analogue selections.

P20
P30 P50 = 4 months to peak

e

F40 —
50
FGo

Fio
FE0

Mean = 5 months to peak

Percentile

590 Always keep wells that exhibit behavior that

P95 could happen (i.e. try to minimize your

P93
P99 @

biases In the statistical representation).
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Days to Peak (Gas)
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3.1c) Ramp Up Profile (Negative Time from Peak)

Rate (mcf/dayfwell)
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3.2) Dimensional Normalization

Dimensional normalization puts wells into a meaningful comparative context.
The production profiles of these wells are similar when dimensioned by their completed length.

Type-well Curve (Rate vs Time) TYPE'Vfﬂ: Eur:_inn”ﬁr?ﬂjﬁf 'iﬂ g:mﬂ;t?d}ength
5500 2WWlls - Group By LW ol ) - CD Avg Gas (metiday el 500 Ells - Group By: LW (el fx ) - -CD &vg Gas (mot/dayfvel)A100m Lengt
6,000 | |
1085 meter completed length ‘ I
5,500 Eam
5,000 %
' The production profiles of these wells ]
4,500 are very different =
o o
T 4.000 »
E 3,500 E 200
T o
£ 3000 =
2 S
S 2500 = |
£ 200
=0 M\/— %
1500 | S ‘E When dimensionally normalized to completed length,
00 680 meter completed length | @ 100 production for these two wells is nearly the same.
' o
(14
500
1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23
Month Month
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3.3) Fractional Normalization (Decline Profile Shape)

Fractional Normalization (Production Relative to Peak)

1.00

1.00

e Fractional Rate = monthly rate / peak rate

060 (1) Tells you what percent of peak rate you can expect in any given month?

2) Given a peak rate, you can generate a quick production profile.

0.40

13) Allows you to compare decline profile “shapes”.

0.20

- 0.20

Production Rate as Fraction of Peak Rate

000 L e e g
1 13 25 37 49 51 73 85 a7 109

Month

Data prowvided by [HS Information Hub - Mo 29, 20156, 10:17 20 W15AGE™
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3.3) Fractional Normalization (useful comparative tool)

Production Rate as Fraction of Peak Rate
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=
o
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0.60

0.40

=
i
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Fractional Normalization (Production Relative to Peak)
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Demonstration of how one operational design
sustains production rates better than others.
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4) Calendar Day vs Producing Day Rates

Calendar Day Rate = (volume) / (days in month)

Strength: representative of operational reality (i.e. what actually happened).
Weakness: significant downtime can disrupt the decline shape.

Producing Day Rate = (volume) / (hours producing) * 24

Strength: sometimes more accurately reflects production decline behavior when
significant downtime occurs.

Weakness: inflates every production period’s value (with downtime) and can
overestimate EUR potential. Incorrect hours and flush production (on gas wells) can
result in anomalous data spikes. This is reliant on accurate reporting of producing hours.
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4) Calendar Day vs Producing Day Rates

Calendar Day vs Producing Day Comparison
43 wWells
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=D Awg Ol (hblidarebevell) | 10227 15240( 24084 22446 17341| 14229| 134.04( 109.31 31 .31 §9.96 §9.90 5,25 7693 65.12 29,33 4506 4354 4054 39 65 36.70 31 .65 2867 J1.07 29.76
m= PD Avg Qil (hblfdaytvell) | 30620( 459.25| 38338 30362 208.01| 15843 14732 12052 9935 | 100.04| 10451 95 .55 g4.79 |  F12.00 BE.71 49 32 49.23 45 65 4325 4537 39.47 36.45 3332 3256

34

Enterprise class. User-friendly. Discovery Analytics.



5) Condensing Time (ldealized Type-well Curves)

“Idealized” type-well curves typically better reflect production decline profiles,

but do not accurately reflect elapsed time.

Method 1 (remove months)

Example 1: remove months where production values are zero. Aligns producing months across the dataset. Good on
Rate vs Cumulative Charts (see **Note below)

Example 2: remove months where producing hours is less than a threshold of 200 hours. Used to isolate only
“representative” producing months (introduces bias).

Method 2 (cumulative producing time)

Example 1: plot Producing Day Rate against Cumulative Hours produced.

Example 2: plot Cumulative Production against Cumulative Hours produced.

**Note: Excluding zero producing months on Rate vs Cumulative charts ensures that the average of the cumulatives equals the cumulative of the averages.
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5.1) Condensing Time (removing months)

Condensing Time (Zero Production Months Removed)

Q01 2-13-080-1 65N
2.400.00 |
Condensed (zero months removed):
Production spikeis evident. Actual Production Profile:
Flush production spike after
ﬁ/ 12 months of zero production.
'\
1,800 00 . '

!

[ . . .
= oy Beware of flush production spikes when removing
2 A | :

B L A zero-production months (more so on gas wells).
L2y I I - -
E 1,200.00 ll II I, ‘lL
= 1
O ! L : ~ »
= I 1 -~ I \
o ] 1 | ‘N—..‘ ~
J 1! 1 —~
/ | \ ~
/ 1 ! ] S
60000 i : 1 ——f
:l II NN
?' \
\/
Y
0.00 | - -
1 7 13 19 25 31 37 43 49
Mionth
== Zero Production Months Removed - CD Avg Gas (mcf/dayfwell)
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5.2) Condensing Time (cumulative hours producing)

Gas Type-well Curve (Cumulative Production vs Cumulative Producing Days)

2'Wells - Group By: LW [ xxf 0500 - Gas (mcthoell)

1,500 000

1,600,000

1,400 000

1,200,000

1,000,000

500,000

GO0,000

Cumulative Volume (mcfiwell)

400,000

200,000

Two wells can appear to have very
similar production profiles from this
perspective ....

0.00

25.00 50.00 75.00 100.00
Cumulative Producing Day

Producing Day Rate {mcf/day/well)

Gas Type-well Curve (PD Rate vs Cumulative Producing Days)

Group By LW (el ) - PD Avg Gas (motidayhvell)

12,000

9,000

5,000

3,000

0

0.00

25.00 5000 75.00 100.00 125.00 150.00 175.00 200.00 2 [:] I:I [:] I:I
Cumulative Producing Days/well
Data

2 Phl WASAGE™

Oata provided by IHS Oata Hub - Moo 29, 20145, 12:44 PRy W5AGE™
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5.2) Condensing Time (cumulative hours producing)

Beware of the danger of factoring out elapsed time. Condensing time by using cumulative-producing-hours
could present two wells as similar (see previous slide), while there are dramatic differences in actual
production performance (the same two wells from previous slide are shown below in rate vs time and cum vs time).

Rate (mcf/day/well)

12,000.00

5,000.00

,000.00

a,000.00

0.00

Two wells with the same IP90
2Wells - Group By L (x5 - 0 Avg Gas (mcfiday el

IP90 achieved after 3 mnﬁths I

a K g 11 13 15 17 19 21 23
Month
Data provided by [H3 Data Hub - Jun 11, 2015, 437 PM WSAGE™

Two wells with the same IP90
2Wiells - Group By LV xxf 0] - Gas (mcthaell)

3,000,000.00

2,400,000.00

1,800,000.00

1,200,000.00

Cumulative Volume [mcfiwell)

E00,000.00

0.00

1 3 a Fi g 11 13 15 17 19 21 23
Month
Data provided by [H3 Data Hub - Jun 11, 2015, 426 PM WSAGE™

Source: How usefulare IP30, IP60,

P90... initial production measures?
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6) Important Questions for Decision Makers

1) How was this type-well curve developed? What does it represent?

2) Is this type-well curve being used to inform economic decisions or
development plans?

3) Yes... then has it been scaled to accurately reflect operational realities?
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7) What is Survivor Bias?

Survivor Bias lllustration
3Wells - Group By LA w1 - D Avg Qil (hblidayiavell)
- !
@ Q|
o o
S S
o o o
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i | o] | .
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i !
1 i . .
i i
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@
E R A — . :
oy N \ : 1 Survivor biased: productionincrease as !
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o - : | o e S ——— =)
@ 200.00 N | 11 Survivor biased: production increase asi
5 I | (depleted well excluded from average.
12 : Iy
I 1
I o
I (.
I 1o
100.00 : - \ : ‘i
4 ik oy
: M N
: Ihr_--'l-'—h'-"I#‘#I
| e ———————— e |
0.00 - - — - - - — . . .
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Month
DOata provided by IHS Oata Hub - Mow 29, 2015, 3:42 A WSAGE™
= Survivor Biased — 00/01-07-049-05W5/0 — 00/01-33-047-02W5/0 — 00/13-21-050-06W5/0
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7) Survivor Bias Controls

Survivor Bias lllustration
dwells - Grougp Bys LT e 000 - C0 Asyg Qil Chkliday ieeell
A |
s : . o .
Ei Survivor bias controls will include zeros in the
40000 —I .
= average for wells after they are identifiably
cl
g depleted (e.g. no production in last 12 months).
- i , :
0000 NN E
'-E_ \Survivor biased: productionincrease as :
3 ,depleted well excluded from average._ _: :
= | A — I —
E, : 'Survivor biased: productionincrease as
g o | |depleted well excluded from average. |
g : i
T~ v
o
100.00 -
| DTS — o
Sy i
! S~ :h"h--——"--. \ e :
"'———-'—I— -,
0.00 - - - | — | i ——— i ——
1 4 7 10 13 16 19 27 25 28
Month
= Survivor Bias Controlled = SUrvivor Biased ~— 00/01-07-049-05W3H/0
— 00/01-33-047-02WW5/0 — 00/13-21-050-06W5/0
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8) Truncation using Sample Size Cut-off

Sample sets often have wells with a range of production history, meaning the latter portion of the
type-well curve is based on, and increasingly biased by, older wells.

“Sample size cut-off” is expressed as a percent of the first month’s sample size. When the number

of producing wells contributing to the average drops below the specified percentage the type-well
curve average will stop calculating.

Common values used are 50% or greater.

Consider selecting wells by vintage to ensure contributing wells have a similar amount of production
history.
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9) Forecast the Average vs Average the Forecasts

Forecast the Average

Apply a decline profile to the truncated average type-well curve to get a single full life profile of EUR

Time effective, but does not provide a distribution of EUR values

Average the Forecasts (of all wells)

Time consuming unless auto-forecasting is used

Auto-forecasting typically does not have any “human” judgement applied to it, but forecast results can be
vetted

Useful for statistical evaluation and P10/P90 quantification of EUR uncertainty
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10.1) Representing Uncertainty (Distributions)

Percentile (Cumulative Probability)

Qil Peak Rate Percentile

52 'Wells

Probit with P10/P90 ratios
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Gas Peak Rate Probit Distribution (pre-2103 vs post 2013)
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Fo0 y 7
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10.2) Percentile Trendlines

Percentile Trendlines (Representing Uncertainty)
5 I[:I[:I[:I 234 Wells
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r~ \\ P10 value for each period.
i
i \
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10.3) Percentile Trendlines
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10.4) Percentile Trendlines (EUR Outcomes)

Percentile Trendlines (Range of Cumulative Production Outcomes)
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11) Auto-forecast Tools

Auto-forecasts provide a complementary set of tools and insights that can not be achieved

by looking at production history alone. They include:

EUR Half-life (time to produce 50% EUR ~ 80% NPV)
Instantaneous b values
Effective Annual Decline Rates

EUR (distributions, dimensional normalization)

These can be used to characterize uncertainty, validate manual forecasts, provide
supporting material for multi-segment Arps forecasts, and spatial analysis.

49 Enterprise class. User-friendly. Discovery Analytics.



11.1) Auto-forecast Tools (EUR “Half-life”)

Auto-forecast with Percent of EUR Produced
234 Wiell=
4 800 100.0
s The EUR "Half-life" is the 04
< time it takes to produce |
T 50% of the EUR.
A c0.0
= i
E 2,600 1 o
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I A - 6008
= <
by ®
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e 300 S
5
o 1,200
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0 0.0
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Month
Oata prowvided by IHS Informmation Hub - Bow 30, 2015, 9:47 A WISAGE™
m Actual + FC (MDNG to ARPS) Gas (mct/day/well) = FC (MDMG to ARPS) Gas (mcfidayiwell)
== IR Gas % produced (Actual + MDMNG to ARPS) using mcf == FlIF Gas % remaining (Actual + MDMNG to ARPS) using mcf
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11.2) 50% EUR as a Proxy for 80% Value

Percentage of Cumulative PV and Reserves vs Time

o L aerirnibrtirt An illustration that production of 50% of a well’s EUR is a reasonable proxy
for 80% of a well’s value (on a horizontal multi-stage well).
R N | M % Reserve
| I l l l | M % Present Value

1 2 3 4 5 &6 7 8 59 10 11 12 15 14 15 16 17 18 159 20 21 22 23 24 25 26 27 2B 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Percentage of The Cumulative

Time in Years

Courtesy of Rose & Associates
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11.3) EUR Half Life Comparison

Percent of EUR Produced Play Comparison

100

0% of EUR

The time it takes for a well to produce 50% of EUR is an indicator of

Percent of EUR Produced (%)

how much a well’s value is weighted to the early life of the well.
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Month

Data provided by IHS Information Hub - Dec 01, 2015, 8:453 & W15AGE™
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11.4) b value and Annual Decline Rate

Auto-forecast, b value and Effective Annual Decline
1 Wiell 1000
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11.4) Probit Plots on Forecast Parameters

6 month b value (binned by quartile)
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11.5) Percentile Quartile Binning on Maps

6 month b value (binned by quartile)
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Presentation Recap

1) Chart Types

2) Analogue Selection

3) Normalization

4) Calendar Day vs Producing Day

5) Condensing Time

6) Operational/Downtime Factors on ldealized Curves
7) Survivor Bias

8) Truncation Using Sample Size Cut-off

9) Forecast the Average vs Average the Forecasts
10) Representing Uncertainty

11) Auto-forecast Tools
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Closing Comments

1) All of the techniques in this presentation take minutes to perform (with the right tools).
They are within your grasp.

2) Take time to investigate and ask questions. It will help you characterize, reduce, and
manage uncertainty.

3) Understanding what you're trying to accomplish with your analysis can help you focus on
the technigues that will best meet your needs.

4) Capture the steps, assumptions, analogue selection criteria, well exclusions... to help
communicate with colleagues how your type-well curves were developed.

5) Use many charts ... build a narrative!
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Thanks to Advisors & Trusted Experts

Matt Ockenden

Auto-forecast design contributions, quartile mapping & industry expertise

Jim Gouveia (Rose & Associates)
Uncertainty coaching, risk analysis workflows & best practices

GLJ Petroleum Consultants
Industry expertise, technical advice & software design contributions

Brian Hamm (McDaniel & Associates)
Survivor bias design contributions & type-well curve insights
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Data Sources Used In This Presentation

Canadian @

Discovery.u.

WELL COMPLETIONS &

FRAC

DATABASE

Information Hub
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VERDAZO Blog Links With Supporting Information

Type-well Curves Part 1: Definitions and Chart Types
Type-well Curves Part 2: Analogue Selection

Type-well Curves Part 3: Normalization

Type-well Curves Part 4: Calendar Day vs. Producing Day

Type-well Curves Part 5: Condensing Time (Idealized Type-well Curves)
Type-well Curves Part 6: Operational/Downtime Factors on Idealized Curves

Type-well Curves Part 7: Survivor Bias
Type-well Curves Part 8: EUR, Value, Uncertainty & Auto-forecasts

How useful are IP30, IP60, IP9O0 ... initial production measures? (the dangers of factoring out elapsed time)

What production performance measure should | use? (for production performance comparisons)
So What Is The Problem With Production Type Curves? (Percentile trendline overview)
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http://www.verdazo.com/blog/type-well-curves-part-1-definitions-and-chart-types/
http://www.verdazo.com/blog/type-well-curves-part-2-analogue-selection/
http://www.verdazo.com/blog/type-well-curves-part-3-normalization/
http://www.verdazo.com/blog/type-well-curves-part-4-calendar-day-vs-producing-day/
http://www.verdazo.com/blog/type-well-curves-part-5-condensing-time-idealized-type-well-curves/
http://www.verdazo.com/blog/type-well-curves-part-6-operationaldowntime-factors-on-idealized-curves/
http://www.verdazo.com/blog/type-well-curves-part-7-survivor-bias/
http://www.verdazo.com/blog/type-well-curves-part-8-eur-value-uncertainty-auto-forecasts/
http://www.verdazo.com/blog/how-useful-are-ip30-ip60-ip90-initial-production-measures/
http://www.verdazo.com/blog/what-production-performance-measure-should-i-use/
http://www.verdazo.com/blog/so-what-is-the-problem-with-production-type-curves/
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